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A Liénard type nonlinear oscillator of the form ẍ+kxẋ+ �k2 /9�x3+�1x=0, which may also be considered as
a generalized Emden-type equation, is shown to possess unusual nonlinear dynamical properties. It is shown to
admit explicit nonisolated periodic orbits of conservative Hamiltonian type for �1�0. These periodic orbits
exhibit the unexpected property that the frequency of oscillations is completely independent of amplitude and
continues to remain as that of the linear harmonic oscillator. This is completely contrary to the standard
characteristic property of nonlinear oscillators. Interestingly, the system though appears deceptively a dissipa-
tive type for �1�0 does admit a conserved Hamiltonian description, where the characteristic decay time is also
independent of the amplitude. The results also show that the criterion for conservative Hamiltonian system in
terms of divergence of flow function needs to be generalized.
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I. INTRODUCTION

Nonlinear oscillator systems are ubiquitous and they
model numerous physical phenomena ranging from atmo-
spheric physics, condensed matter, nonlinear optics to elec-
tronics, plasma physics, biophysics, evolutionary biology,
etc. �1–5�. One of the most important characteristics of non-
linear oscillations is the amplitude or initial condition depen-
dence of frequency for nonisolated periodic orbits �1,3,5�.
For example, for the cubic anharmonic oscillator

ẍ + �0
2x + �x3 = 0 ��0

2,� � 0� , �1�

where the overdot denotes differentiation with respect to t,
the general �periodic� solution is x�t�=Acn��t+	�, where A
and 	 are arbitrary constants with the modulus squared of the
Jacobian elliptic function m2=�A2 /2��0

2+�A2� and fre-
quency �=��0

2+�A2. In the case of limit cycle oscillations
the dependence of the initial condition is manifested in the
form of suitable transient time to reach the asymptotic state.
For chaotic oscillations, of course, there is the sensitive de-
pendence on initial conditions. In this paper we identify a
physically interesting and simple nonlinear oscillator of the
Liénard type, which is also a generalized Emden-type equa-
tion, that admits for a particular sign of the control parameter
nonisolated conservative periodic oscillations, exhibiting the
remarkable fact that the frequency of oscillation is com-
pletely independent of amplitude and remains the same
as that of the linear harmonic oscillator, thereby showing that
the amplitude dependence of frequency is not necessarily a
fundamental property of nonlinear dynamical phenomena.
We also show that rewriting the underlying equation of
motion as a system of two first order coupled nonlinear
differential equations the basic criterion for conservative sys-
tem in terms of the divergence of the flow function has to be
generalized.

We consider a nonlinear oscillator system of the form

ẍ + kxẋ +
k2

9
x3 + �1x = 0, �2�

which is of the Liénard type ẍ+ f�x�ẋ+g�x�=0, where
f�x�=kx and g�x�= �k2 /9�x3+�1x in the present case. Equa-

tion �2� can also be interpreted as the cubic anharmonic os-
cillator defined by Eq. �1� �with �0

2=�1 and �=k2 /9�, but
acted upon on by a strong damping type nonlinear force kxẋ.
This type of equation is also well studied in the literature for
almost two decades as a generalized form of Emden-type
equation occurring in the study of equilibrium configurations
of a spherical cloud acting under the mutual attraction of its
molecules and subject to the laws of thermodynamics �6�.
Equation �2� is a special case of a general second order non-
linear differential equation possessing eight Lie point sym-
metries �7� and that it is linearizable. In particular the special
case �1=0 has been well analyzed by Mahomed and Leach
�7� and explicit forms of the eight symmetry generators sat-
isfying sl�3,R� algebra have been well documented. The lat-
ter case ��1=0� has the exact general solution

x�t� =
t + I1

k

6
t2 +

I1k

3
t + I2

, �3�

where I1 and I2 are the two integrals of motion with the
explicit forms

I1 = − t +
x

k

3
x2 + ẋ

, �4a�

I2 =
k

6
t2 +

1 −
k

3
tx

k

3
x2 + ẋ

. �4b�

Obviously for �1=0 case the initial value problem of Eq. �2�
appears to be a dissipative nonlinear system.

In the following we show that the nonlinear oscillator Eq.
�2� possesses several unusual and interesting features, which
are contrary to the standard characteristic features associated
with usual nonlinear oscillators. For example, in the case
�1�0 we prove that the system �2� possesses oscillatory
motion whose frequency is completely independent of the
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amplitude. Thus we prove that the standard notion of
amplitude-dependent frequency of oscillations is not a nec-
essary condition for nonlinear oscillators. Moreover, we also
point out that the system �2� admits a Lagrangian formula-
tion and from which a conservative Hamiltonian can be ob-
tained. Further, we also find that the standard test �diver-
gence of the flow function� to identify whether the given
system is conservative or not fails here. To overcome this
situation we propose that the necessary condition for a sys-
tem to be a conserved Hamiltonian is that the time average of
the divergence of the flow function should vanish instead of
the flow function itself vanishing. More interestingly, we also
find that the system �2� when �1�0 also admits a Lagrang-
ian as well as a conserved Hamiltonian description similar to
the case �1�0, eventhough the general solution shows a
dissipative/damping/frontlike aperiodic structure, depending
on the initial condition. The divergence of the flow function
for the case �1�0 can be negative for all times in spite the
conserved Hamiltonian nature. Again to redeem the situation,
one requires the time average of the divergence of the flow
function to be vanishing. Further, we point out that the spe-
cial features of the system can be traced to the existence of
certain linearizing and canonical and nonlocal transforma-
tions, which points out to generalization of the results in
different directions. Finally, we also note that the system �2�
is a typical example of a reversible dynamical system, well
studied in the literature �8–19�, and bring out the importance
of reversible symmetries in relation to the above explicit
dynamical behaviours associated with Eq. �2�.

The plan of the paper is as follows. In the following sec-
tion, we utilize the so-called modified Prelle-Singer proce-
dure and derive two functionally independent integrals of
motion for the Eq. �2�. In Sec. III, we show that for the case
�1�0 the system �2� admits periodic solutions and construct
the associated Lagrangian as well as Hamiltonian for this
system. We discuss the unusual features associated with the
system in Sec. IV and point out the amplitude independence
of the frequency of oscillations as well as the nonzero value
of the divergence of the flow function in spite of its conser-
vative nature. We analyse the nature of solutions in the re-
gimes �1=0 and �1
0 in Sec. V and point out that in spite
of the decaying/damping nature or frontlike aperiodic nature
of the solutions, the system admits Lagrangian and Hamil-
tonian descriptions. In Sec. VI we have indicated some in-
teresting connections between our system �2� and reversible
dynamical systems. In Sec. VII, we linearize the Eq. �2�
through different kinds of transformations �invertible
point, nonlocal and canonical transformation� to trace
the unusual features of the system. In Sec. VIII, we general-
ize Eq. �2� and compare the dynamics with certain other
interesting nonlinear oscillators. Finally, we present our
conclusions in Sec. IX.

II. EXTENDED PRELLE-SINGER PROCEDURE

Now let us consider the general case �1�0. One
can proceed to solve the equation explicitly by the so
called modified Prelle-Singer �PS� method �20,21�
which identifies the integrals of motion and explicit solution,

if they exist. One can also use other methods as well;
however, we find that the PS method is quite convenient
�21� to obtain both the integrals of motion and solution
explicitly. Assuming the existence of an integral I= I�t ,x , ẋ�
for Eq. �2� and rewriting the latter as ẍ= P�x , ẋ�, where
P=−kxẋ− �k2 /9�x3−�1x, so that Pdt−dẋ=0, and introducing
a null term S�t ,x , ẋ�ẋdt−S�t ,x , ẋ�dx, we find that on the
solutions, �P+Sẋ�dt−Sdx−dẋ=0. Since I is a constant of
motion, it follows that

dI = Itdt + Ixdx + Iẋdẋ = 0, �5�

so that

dI = R�P + Sẋ�dt − RSdx − Rdẋ = 0, �6�

where R is an integrating factor. Comparing Eqs. �5� with �6�
we have, on the solutions, the relations

It = R�P + ẋS�, Ix = − RS , Iẋ = − R .

Then the compatibility conditions, Itx= Ixt, Itẋ= Iẋt, Ixẋ= Iẋx,
require that

D�S� = − Px + SPẋ + S2,

D�R� = − R�S + Pẋ� ,

Rx = RẋS + RSẋ, �7�

where

D =
�

�t
+ ẋ

�

�x
+ P

�

�ẋ
.

Solving Eq. �7� systematically for S and R, one can write
down the form of the integral of motion

I = r1 − r2 −� �R +
d

dẋ
�r1 − r2��dẋ , �8�

where

r1 =� R�P + ẋS�dt, r2 =� 	RS +
d

dx
r1
dx ,

for the given form P=−kxẋ− �k2 /9�x3−�1x. We find two in-
dependent sets of compatible solutions of Eq. �7�, namely,

S1 =

− ẋ +
k

3
x2

x
, R1 =

xe−2�−�1t

	ẋ +
k

3
x2 − ��1x
2 , �9a�

S2 =
	 k

3
x + �− �1
2

−
k

3
ẋ

k

3
x + �− �1

, R2 =
	 k

3
x + �− �1
e�−�1t

	ẋ +
k

3
x2 + �− �1x
2 .

�9b�

Consequently, substituting R and S in Eq. �8�, we find the
two �time dependent� integrals of motions for Eq. �2� as
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I1 = e−2�−�1t� ẋ +
k

3
x2 + �− �1x

ẋ +
k

3
x2 − �− �1x� , �10a�

I2 = −
6

k
e�−�1t� �1 +

k

3
ẋ +

k2

9
x2

ẋ +
k

3
x2 + �− �1x� . �10b�

III. PERIODIC SOLUTIONS, LAGRANGIAN AND
HAMILTONIAN DESCRIPTION FOR THE CASE �1�0

As we mentioned in the introduction Eq. �2� admits two
different kinds of dynamics depending on the sign of the
parameter �1. In this section we discuss the case �1�0.

A. Periodic solutions

Now we note that for �1�0 both the integrals I1 and I2
become complex. To identify two real integrals, we consider
the combinations

J1 =
4

k2I1I2
2 =

�3ẋ + kx2�2 + 9�2x2

�3kẋ + k2x2 + 9�2�2 , �11�

where �=��1 and

J2 = −
2ei	

kI1I2
= ei��t+	�	 3ẋ + kx2 − 3i�x

3kẋ + k2x2 + 9�2
 , �12�

so that J1 and J2 can be taken as the two real integrals of
Eq. �2� for �1�0. In Eq. �12�, 	 is a phase constant.

Thus for the case �1�0, the integrals �11� and �12� lead
to the explicit sinusoidal periodic solution �Fig. 1�,

x�t� =
A sin��t + 	�

1 − 	 k

3�

A cos��t + 	�

, 0 � A 

3�

k
, � = ��1,

�13�

where A=3��J1 and 	 is an arbitrary constant. The form of
the first integral �11� also establishes that the system is of
conservative type. Note that in Eq. �13�

xmax = B =
A

	1 −
k2

9�2A2
1/2

and

xmin = −
A

	1 −
k2

9�2A2
1/2 ,

so that

A = ±
B

	1 +
k2

9�2B2
1/2

and B may be called as the amplitude of oscillations in the
present case. Also for A�3� /k, the solution �13� becomes
singular at finite times.

B. Lagrangian and Hamiltonian description

The form of the time independent first integral J1 as given
by Eq. �11� suggests that one can indeed give a Lagrangian
and so a Hamiltonian description for Eq. �2� when �1�0.
Indeed we identify a suitable Lagrangian for the system �2�
as

L =
27�1

3

2k2 � 1

kẋ +
k2

3
x2 + 3�1� +

3�1

2k
ẋ −

9�1
2

2k2 . �14�

Then the canonically conjugate momentum can be defined as

p =
�L

�ẋ
= −

27�1
3

2k � 1

	kẋ +
k2

3
x2 + 3�1
2� +

3�1

2k
. �15�

Consequently, one can obtain the Hamiltonian associated
with Eq. �2� as

H =
9�1

2

2 � 	ẋ +
k

3
x2
2

+ �1x2

	kẋ +
k2

3
x2 + 3�1
2� �

9�1
2
I1

2
�16a�

or

FIG. 1. �Color online� Harmonic periodic solutions of the non-
linear Liénard-type oscillator for different initial conditions �Eq.
�2�� with frequency same as that of the linear harmonic oscillator.
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H =
9�1

2

2k2�2 − 2	1 −
2kp

3�1

1/2

+
k2x2

9�1
−

2kp

3�1
−

2k3x2p

27�1
2 � .

�16b�

Note that in the above expressions L, p and H, we have kept
certain prefactors and constant terms in order to have the
correct limits for k→0, namely, the harmonic oscillator
limit. The nature of the trajectories in the �x− ẋ� and �x− p�
planes are shown in Fig. 2. They form closed concentric
curves in the region x
3� /k.

Finally we may point out that because of the form of the
second and third terms in the right-hand side of Eq. �14� one
may define a modified Lagrangian

L̄ =
1

kẋ +
k2

3
x2 + 3�1

, �17a�

with the conjugate mementum

p̄ = −
k

	kẋ +
k2

3
x2 + 3�1
2 �17b�

and the associated Hamiltonian

H̄ =

2kẋ +
k2

3
x2 + 3�1

	kẋ +
k2

3
x2 + 3�1
2 �17c�

or

H = 	 k

3
x2 +

3�1

k

p − 2�− p

k
, �17d�

which again correspond to the equation of motion �2�, pro-
vided k�0. However, in the limit k→0, in order to get the
correct harmonic oscillator it is preferable to have the forms
�14�–�16�. On the other hand, the later forms �17� have the
advantage that they give interesting �1=0 limit, which we
discuss in the next section. Consequently, we have chosen to
present both the forms here.

IV. UNUSUAL FEATURES OF EQ. (2) WITH �1�0

A. Amplitude-independent frequency of oscillations

The remarkable features of the general solution �13� are
that the nonlinear system �2� admits harmonic periodic solu-
tions �13� and that the frequency of these periodic oscilla-
tions, �=� /2=��1 /2, is completely independent of the
amplitude or initial condition, a feature which is generally
quite uncommon for nonlinear oscillators of conservative
type. The form of the solution is shown in Fig. 1. It may be
noted that in the limiting case of vanishing nonlinearity,
k=0, one recovers the solution of the linear harmonic oscil-
lator as it should be from Eq. �13� and there is no change in
the angular frequency �=��1 even when k�0, as can be
seen from Eq. �13�. However, it may be noted that in the
limit �1 or �→0, A→0 and so x→0, the trivial solution to
Eq. �2� and not to the aperiodic bounded solution �3�. Thus at
�1=0, a bifurcation occurs.

B. The nature of flow function

Another interesting feature of Eq. �2� is that when written
as a system of two first order equations, it takes the form

ẋ = y � f1�x,y� , �18a�

ẏ = − kxy −
k2

9
x3 − �1x � f2�x,y� . �18b�

For �1�0, it has one equilibrium point �0,0� which is of
centre type compatible with the occurrence of nonisolated
periodic orbits. Interestingly the conventional criterion for
conservative systems �see, for example, Refs. �22–25��,
namely, the value of the divergence of the flow function
�=�f1 /�x+�f2 /�y for Eq. �18� vanish, fails here as
�=−kx. Only the average of �, namely,

�̄ =
1

T
�

0

T

�dt = −
k�

2
�

0

2/�

xdt , �19�

on actual evaluation using the solution �13�, vanishes. Such a
generalized criterion that the average of the flow function
vanishes for a conservative system seems to be a necessary
condition as the present example shows �see also the last
paragraph of Sec. V below and �9��.

V. THE APERIODIC CASES �1Ï0

In the previous section, we discussed the dynamics of Eq.
�2� for the case �1�0. In the following we explore the dy-
namics of the system �2� with �1�0. For �1
0, both the
time-dependent integrals �10� are real, from which the ex-
plicit solution can be obtained straightforwardly as

x�t� = 	 3��1�I1e2��1t − 1�

kI1I2e��1t + k�1 + I1e2��1t�

 , �20�

where I1 and I2 are constants. Solution �20� clearly shows
the dissipative/damping/aperiodic nature of the system for
�1�0 in Eq. �2�.

FIG. 2. Phase trajectories corresponding to Eq. �2� for x

3� /k: �a� �x− ẋ� plane, �b� �x− p� plane.
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We now note that system �1�0 still admits the Lagrang-
ian and Hamiltonian descriptions. In fact the Lagrangian L
and the Hamiltonian H for the case �1�0, namely, the forms
�14� and �16�, respectively, are valid here also. The only
difference here is that one has to replace �1 with −�1 in the
respective places in Eqs. �14� and �16� for the present case.
On the other hand the forms �17� are valid for �1�0 as well
as �1�0, though not valid in the limiting harmonic oscillator
case k→0.

The major difference in the dynamics comes from the
nature of the solution. In the present case it admits decaying
type or aperiodic �frontlike� solutions only, see Fig. 3, where
the time of decay or approach to asymptotic value is inde-
pendent of the amplitude/initial value, which is once again
an unusual feature for a nonlinear dynamical system.

We mention here that in the case �1
0 when the
nonlinearity is absent in Eq. �2�, it becomes a repulsive
harmonic oscillator, namely, ẍ− �1x=0, which obviously
admits an unbounded solution of the form, x�t��e±�1t as
t→ ±�. However, the presence of the nonlinearity terms,
kxẋ+ �k2 /9�x3, makes the solution �20� to be a bounded and
frontlike one with asymptotic values x�t�→ ±3��1 /k as
t→ ±�.

Further, from the Fig. 3, one can see that for any initial
condition the frontlike solution asymptotically approaches
the value 3��1 /k as t→�, which is a stable node �see also
Sec. VI elow�, as may be verified from the explicit solution
�20� itself. Thus the frontlike structure �20� is a linearly
stable entity.

The nontrivial general solution for the limiting case
�1=0 is given in Eq. �3�. Interestingly in this case also one
can deduce a Lagrangian and the associated Hamiltonian,
which �from Eqs. �17�� turn out to be

L̂ = � 1

kẋ +
k2

3
x2� �21�

and

H =
k

3
x2p − 2�− p

k
, �22�

where

p = −
k

	kẋ +
k2

3
x2
2 . �23�

The above form of Lagrangian can also be deduced from the
form �14�, by taking the Lagrangian for the limiting case
�1=0 as

L̂ = lim
�1→0

2k2

27�1
3	L −

3�1

2k
ẋ +

9�1
2

2k2 
 .

The expressions p and H given above can be obtained from

this L̂. The solution plot �corresponding to solution �3�� is
given in Fig. 4.

One can also calculate the flow function in the case
�1�0. Again from Eq. �18� we find that the divergence of
the flow function for �1�0 is �=−kx. But from the general
expression for the solution, one can always choose x�t��0
for all finite t. So one might conclude that the system is
dissipative �because �
0� inspite of its just proved conser-
vative nature. In order to overcome this incompatibility, and
noting that for the case �1
0, the dynamical variable x�t�
asymptotically tends to a constant value x���=3��1 /k, we
again define the condition for conservative flow is that the
time average of the divergence of the flow function with
reference to the asymptotic �t→�� value should vanish:

�̄ = limT→�

1

T
�

0

T

���t� − �����dt = 0. �24�

In the present cases, we have

�̄ = − limT→�

k

T
�

0

T

�x�t� − x����dt . �25�

For the case �1=0, from the solution �3� we note that x���
=0 and �0

T��t�dt=−3 ln�1+kT�2I1+T� /6I2� so that �̄=0
from Eq. �25�. On the other hand for �1
0, �0

T��t�dt
=−3��1T−3 ln��I1+ I1I2e−T��1+e−2T��1� / �1+ I1+ I1I2�� and

����=−3��1 so that �̄ also vanishes here.
We note that when the variable dependent dissipative term

kxẋ is absent in Eq. �2� the resultant system becomes an
undamped, conservative anharmonic oscillator, that is,
ẍ+ �k2 /9�x3+�1x=0 or equivalently ẋ=y,ẏ=−�k2 /9�x3−�1x.

FIG. 3. �Color online� Solution plot for case �1
0 for different
initial conditions.

FIG. 4. �Color online� Solution plot for case �1=0 for different
initial conditions.
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The divergence of the flow function � now vanishes trivially
in this case which is in confirmity with the Hamiltonian na-
ture of the anharmonic oscillator. On the other hand, if we
add a constant damping alone then the equation of motion
reads as ẍ+kẋ+ �k2 /9�x3+�1x=0, or equivalently ẋ=y,
ẏ=−ky− �k2 /9�x3−�1x, the divergence of the flow function
��=−k� becomes a negative constant for all values of
t which clearly confirms that the system is a dissipative one.
However, the variable dependent dissipative term kxẋ in Eq.
�2�, or equivalently Eq. �18�, makes the divergence of the
flow function �=−kx, to be a nonconstant time varying func-
tion. In this case, only the time averaged flow function �19�
vanishes, as noted above and in Sec. IV B, and the system
�2� exhibits both conservative as well as dissipativelike
structures depending on the sign of the parameter �1, even
while admitting Lagrangian and Hamiltonian descriptions in
both cases.

VI. CONNECTION WITH REVERSIBLE DYNAMICAL
SYSTEMS

Interestingly, we also note that the system �2� is an ex-
ample of a reversible dynamical system: Under the transfor-
mation

S:�x,y,t� � �− x,y,− t� , �26�

the equivalent first order system �18� remains invariant. In
the literature, reversible dynamical systems have been shown
to play an important role within the Hamiltonian as well as
non-Hamiltonian dynamics, see, for example, Refs. �8–19�.
In this direction, Politi et al. �9� have pointed out the possi-
bility of coexistence of both conservative and dissipative be-
haviors in non-Hamiltonian systems depending upon the
value of a control parameter. In particular they have shown
that for critical values of the external field the model which
they considered exhibits symmetry-breaking bifurcation and
the phase space structure changes from conservative to dis-
sipative either in a continuous or discontinuous manner.

The dynamical system studied here clearly demonstrates
with explicit solutions how flows with nonconstant time
varying divergence can exhibit both conservative type
��1�0� and dissipative/frontlike ��1�0� structures. This is
also evident from local analysis of system �18�. For example,
in the case �1�0, the equilibrium point is �0,0�. The corre-
sponding eigenvalues of the Jacobian matrix are ±i��1 so
that the equilibrium point is of center type. In the case
�1
0, there are three equilibrium points, namely, �0,0�,
�3��1 /k ,0� and �−3��1 /k ,0�. The corresponding eigen-
values of the Jacobian matrix are ±��1, �−��1 ,−2��1�,
and ���1 ,2��1�, respectively. Consequently, the equilib-
rium points become saddle, stable node and unstable node,
respectively, and give rise to dissipative/frontlike structures
as discussed in Sec. V. Finally, in the case �1=0 we have the
equilibrium point �0,0�. The associated eigenvalues are also
�0,0�, indicating that the equilibrium is a degenerate one �5�
and that �1=0 is the bifurcation value.

As we have shown in the previous Secs. IV and V both
conservativelike and dissipativelike structures coexist in the

system �2� depending on the value of the control parameter
�1. Even then, we have demonstrated explicitly that the sys-
tem �2� turns out to be a conservative Hamiltonian type for
all values of �1. In order to make both the above results
consistent we have noted that the time averaged divergence
of the flow function should vanish.

VII. LINEARIZING AND CANONICAL
TRANSFORMATIONS

At this stage one may also try to trace the reason for the
existence of the above type of remarkable oscillatory behav-
ior for Eq. �2�. Under the transformation x=3ẇ /kw, Eq. �2�
transforms to a linear third order differential equation

w� + �1ẇ = 0, �27�

from which also one can trace the solution �13�. Further, it
gets transformed into a free particle equation X�=0, where
prime denotes differentiation with respect to a new variable
�, with the point transformation

X = 	 k

3�1
−

1
�− �1x


e−�−�1t,

� = 	 k

3�− �1

−
1

x
e�−�1t. �28�

Even then it is very unexpected and unusual to realize such
nonlinear oscillator systems having simple properties similar
to that of linear oscillators.

In addition to the above, one can also linearize the Eq. �2�
through a nonlocal transformation

U = xe�k/3��x�t��dt�. �29�

Under this transformation Eq. �2� gets modified to the form
of a linear harmonic oscillator equation

Ü + �1U = 0. �30�

Note that the above transformation �29� is valid for all the
three cases, namely, �1�0, �1=0 and �1
0. For �1�0,
obviously the solution of Eq. �30� is

U = A sin��t + 	� , �31�

where A and 	 are arbitrary constants and frequency
�=��1, which is independent of the amplitude. Conse-
quently, from the forms of the general solutions �31� and �13�
we can identify the obvious canonical transformation

x =
U

1 −
k

3�1
P

, �32�

where P= U̇, so that using Eq. �15� for the canonically con-
jugate momentum p, we have

p = P	1 −
k

6�1
P
 . �33�

It is straightforward to check that when U and P are canoni-
cal so do x and p �and vice versa� and that the Hamiltonian H
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in Eq. �16� can be rewritten as the standard linear harmonic
oscillator Hamiltonian

H =
1

2
�P2 + �1U2� . �34�

More interestingly, even for �1
0, making use of similar
argument for the aperiodic bounded solution �20�, we can
write the canonical transformation

x =
U

1 +
k

3�1
P

, p = P	1 +
k

6�1
P
 , �35�

where P= U̇, so that the Hamiltonian �16� �for �1
0� is
mapped on to the unbounded �wrong sign� linear harmonic
oscillator

H =
1

2
�P2 − �2U2�, � = ��1 . �36�

Finally for the �1=0 case, we can identify the canonical
transformation

x =
3P

kU
, p = −

kU2

6
, �37�

so as to transform to a freely falling particle Hamiltonian
H= P2 /2−�2

3U. However, we suspect that there may exist a
canonical transformation for this specific case �1=0, which
will take the corresponding form of Eq. �2� to a free particle,
though we could not succeed to find it so far.

Of course, it is well known that linearization in general
does not ensure preservation of properties of linear systems
in the nonlinear case. The classical example is the Cole-Hopf
transformation through which the nonlinear Burgers equation
is transformed into the linear heat equation �5�. This is also
true in the case of various soliton equations such as
Korteweg–de Vries, sine-Gorden, nonlinear Schrödinger, and
other equations which are all linearizable in certain sense.
Nevertheless in the present example of Eq. �2�, the amplitude
independence of frequency does indeed get preserved. These
considerations also raise the question of identifying the most
general class of nonlinear dynamical systems of the form ẍ
= f�x , ẋ , t� that has solutions whose frequency is independent
of the amplitude as in the case of the linear harmonic oscil-
lator, a point which is under study presently.

VIII. GENERALIZATION AND OTHER EXAMPLES

A. Generalization

We also observed that the above exceptional properties
admitted by Eq. �2� is also common for a class of nonlinear
systems. In particular we find that the modified Emden-type
equation with linear term and constant external forcing

ẍ + �k1x + k2�ẋ +
k1

2

9
x3 +

k1k2

3
x2 + �1x + �2 = 0, �38�

where k1, k2, �1 and �2 are parameters, for which also one
can obtain similar propertes as discussed above for Eq. �2�

when the parameters satisfy the specific condition
�1=2k2

2 /9+k1�2 /k2. To be specific, for the case k1�2 /k2
−k2

2 /9�0, the explicit periodic solution takes the form

x̄�t� =
A sin��̄t + 	�

1 − 	 k

3�̄

A cos��̄t + 	�

,

0 � A 

3�̄

k
, �̄ =��1 −

k2
2

3
, �39�

where x̄�t�=x�t�+k2 /k1. For k1�2 /k2−k2
2 /9
0, the system

becomes aperiodic.

B. Comparison with other nonlinear oscillators

Finally, it is of interest to compare the dynamics of Eq. �2�
with another interesting nonlinear oscillator �5,26� of the
form

ẍ −
�xẋ2

1 + �x2 +
�0

2x

1 + �x2 = 0, �40�

which possesses exact periodic solution x�t�=A sin��t+	�,
where the frequency �=�0 /�1+�A2, exhibiting the charac-
teristic amplitude-dependent frequency of nonlinear oscilla-
tors inspite of the sinusoidal nature of the solution Eq. �40�.
Equation �40� has a natural generalization in three dimen-
sions �27� and these systems can be also quantized exhibiting
many interesting features and can be interpreted as an oscil-
lator constrained to move on a three sphere �28�. Several
generalizations of these systems to N degrees of freedom are
also possible �29�. But all these nice properties are subject to
the fact that the frequency is amplitude dependent. It is only
Eq. �2� which admits the amplitude independence property of
frequency for a nonlinear oscillator. Studies of such systems
will have important implications in developing nonlinear
systems whose frequency remain unchanged even with the
addition of suitable nonlinearity. Also, Eq. �40� when written
as a system of two first order equations of the form �18�, with

f1�x,y� = y and f2�x,y� =
�xy2

1 + �x2 −
�0

2x

1 + �x2 ,

the divergence of the flow function �=2�xy / �1+�x2��0.
On the other hand Eq. �40� is also a Hamiltonian system �26�
with the Hamiltonian given by

H =
1

2
�p2�1 + �x2� +

�0
2x

1 + �x2� ,

even though ��0. Once again it is only

�̄ =
1

T
�

o

T 2�xy

1 + �x2dt = 0.

This again confirms that for a conservative system it is nec-
essary that the average of the divergence of the flow function
vanishes.
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IX. CONCLUSION

In this work, we have identified a nonlinear oscillator
which exhibits unusual oscillatory properties: Purely har-
monic oscillation whose frequency is completely indepen-
dent of the amplitude and is the same as that of the linear
harmonic oscillator. The conservative Hamiltonian nature of
the system has been established, which also necessitates the
generalization of the definition of conservative systems in
terms of the divergence of the flow function. Further, even
for an apparently dissipative type/aperiodic �frontlike� type
system, the Hamiltonian structure is preserved and the defi-
nition of the conservative system in terms of the divergence
of flow function needs to be generalized. In addition to point-
ing out that the system �2� is an example of reversible dy-
namical system we have demonstrated that both conservative
and dissipativelike behaviors can coexist in conservative
Hamiltonian systems of the type considered here depending
on the value of the control parameter. We believe identifica-
tion of such nonlinear systems having the basic property of
linear systems will have considerable practical application as
the effect of higher harmonics is completely suppressed.
Also it is of interest to consider the quantum mechanical
version of the system �16� and its higher dimensional gener-
alizations as well as the effect of external forcing and addi-
tional damping, which are being pursued.

We have also shown that Eq. �2� admits certain interesting
geometrical properties. For example, under the invertible
point transformation �28�, Eq. �2� gets transformed to the
free particle equation whereas with the appropriate choice of
canonical transformations one can transform it to a simple
harmonic oscillator �or to an unbounded oscillator or to a
freely falling particle depending on the value of the param-
eter �1� equation. Interestingly, the very same nonlinear os-
cillator can also be transformed to a third order linear equa-
tion through a nonlocal transformation, while yet another
nonlocal transformation transforms it to a linear harmonic
oscillator. As far as our knowledge goes no such single non-
linear oscillator possesses such large class of transformation
properties. We believe that exploring such nonlinear equa-
tions will be highly rewarding in understanding nonlinear
systems and further work is in progress in this direction.
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